

Nuclear Magnetic Resonance (NMR) Facility

Three NMR instruments available to UC faculty and students as well as universities and industry in the Cincinnati area:

NEO400: ¹H; ¹⁹F-¹⁰⁹Ag, 2Ds **HD500:** ¹H; ³¹P-¹⁰⁹Ag, 2Ds **AV400:** ¹H; ¹⁹F-¹⁰⁹Ag, 2Ds Alex Greenwood

Office: Rm 409/Old Chem; Phone: 513-556-9211;

Email: greenwa2@ucmail.uc.edu

For user training, technical assistance, NMR questions and discussions.

NMR lab services:

NMR On-Demand

 Three spectrometers (two 400 MHz and one 500 MHz) available 24/7 for routine spectroscopy to trained users, no reservation required

Non-Routine experiments

- Instruments can be reserved for non-routine experiments requiring extra setup/calibration, temperature regulation, or long run times
- Solid state experiments on the convertible NEO400 available upon request

Consultation

- Experiment design/planning
- Data interpretation/troubleshooting
- Structure/stereochemistry determination

Bruker AV 400 MHz Spectrometer:

Z-Grad BBFO ATM probe: ¹H/¹⁹F-¹⁰⁹Ag Variable temperature capability Automatic sample changer (16 positions) ¹H, ¹⁰⁹Ag-¹⁹F observe 1D NMR

- Walk-up instrument, 24/7 availability
- Submit experiment and leave-- data is collected automatically and accessed remotely
- Software: Topspin 2 running ICON-NMR

Bruker NEO 400 MHz Spectrometer:

Z-Grad BBFO ATM iprobe: ¹H/¹⁹F-¹⁰⁹Ag Variable temperature capability Automatic sample changer (16 positions) ¹H, ¹⁰⁹Ag-¹⁹F observe 1D and various 2D (¹H-¹H, ¹H-¹³C, ¹H-¹⁹F, ¹⁹F-¹⁹F) experiments available Solid-state capabilities

- State-of the art console, probe and software
- Walk-up instrument, 24/7 availability
- Submit experiment and leave-- data is collected automatically and accessed remotely
- Software: Topspin 4 running ICON-NMR

Bruker AVIIIHD 500 MHz Spectrometer:

Z-Grad BBO ATM probe: ¹H/³¹P-¹⁰⁹Ag
Variable temperature capability
Automatic sample changer (16 positions)

¹H, ¹⁰⁹Ag-³¹P observe 1D and various 2D (¹H-¹H, ¹H-¹³C) experiments available (**no** ¹⁹**F**)

- Walk-up instrument, 24/7 availability
- Submit experiment and leave-- data is collected automatically and accessed remotely
- Software: Topspin 3 running ICON-NMR

Which Magnet should you use?

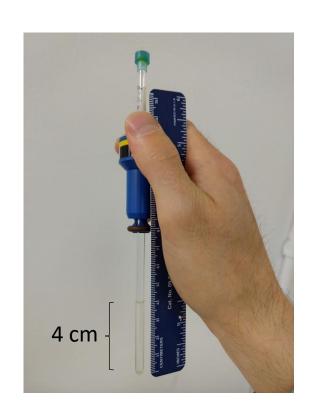
AV400 NEO400 HD500

¹H	1.0	1.4	1.4
¹³ C	1.1	1.0	1.5
³¹ P	1.1	1.5	1.0
¹⁹ F	1.0	1.2	NA

Relative signal-to-noise

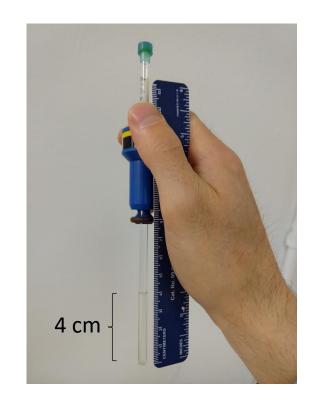
	AV400	NEO400	HD500
¹ H 1Ds	✓	✓	✓
¹³ C 1Ds	✓	✓	√
³¹ P 1Ds	✓	✓	✓
¹⁹ F 1Ds	✓	✓	×
¹ H- ¹ H 2Ds	✓	✓	√
¹ H- ¹³ C 2Ds	✓	✓	√
¹⁹ F- ¹⁹ F 2Ds	✓	✓	×
¹ H- ¹⁹ F 2Ds	✓	✓	×
Variable-temp	×	✓	×
Solid-State	×	✓	×

Note- no ¹⁹F on HD500!


Whichever one is available is usually best!

Preparing your NMR sample

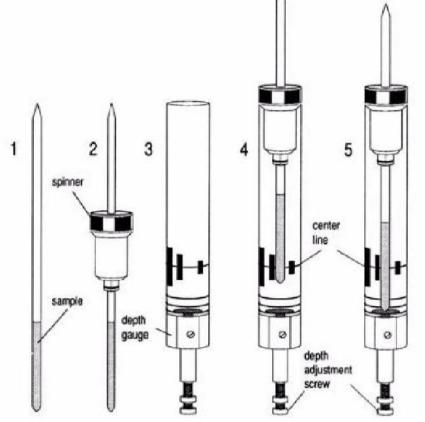
- Use a deuterated solvent if you want ¹H spectra completely free of solvent signals (but solvent suppression works pretty well!).
- Use at least 600 µl (4 cm, or 3 fingers) for good shimming/linewidths
- Use tubes rated for 400 MHz or 500 MHz (for good shimming/linewidths)
- Mark tubes well and use your lab's designated cap color.
- Tubes must not be scratched or broken!
- Tubes should not be dried in ovens hotter than 100 C!



Preparing your NMR sample

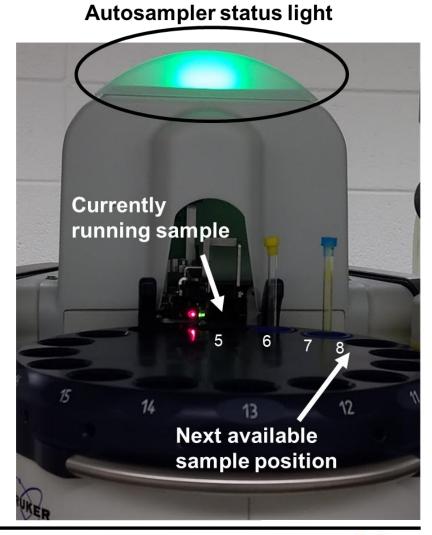
- Solution should be free of particulate— insoluble material will not give signal but will disrupt shimming!
- Use appropriate concentration of material!
 - For ¹H 1D: **2 mM** or ~**0.25 mg** gives a SNR of 100 in 16 scans
 - For ¹³C 1D: **35 mM** or ~6 mg for SNR of 10 at 1024 scans, or **200 mM** or ~25 mg for SNR of 10 at 32 scans

(masses assume molecular mass of 200 Da)

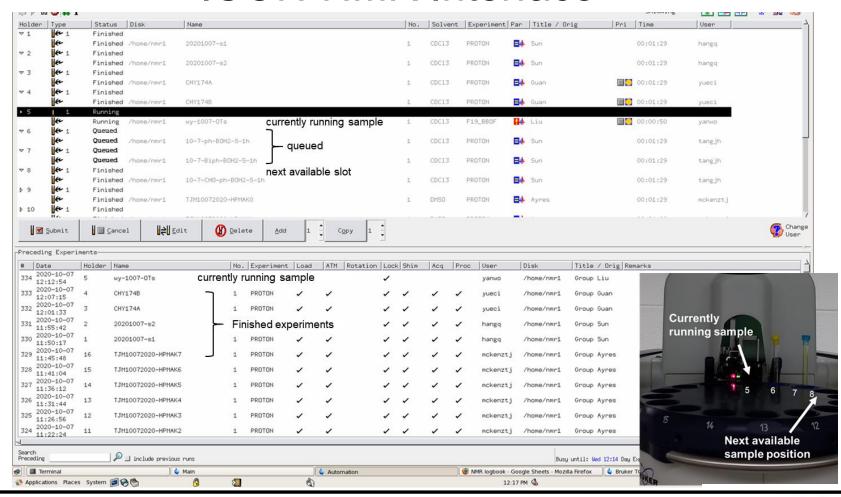


Submitting your NMR sample

- 1) Put tube in spinner
- Clean tube and spinner with kimwipe
- 3) Position tube with depth gauge make sure spinner is flush with top
- 4) Small sample volumes should be centered in coil by bringing tube back up a bit

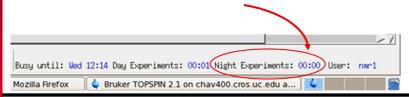

AVANCE Beginners Guide, Bruker

Submitting your sample in the autosamplers


- 5) Identify the next available position in the autosampler and insert your sample
- 6) Define your experiment in that slot and press "submit"

ICON-NMR Interface

ICON-NMR Interface



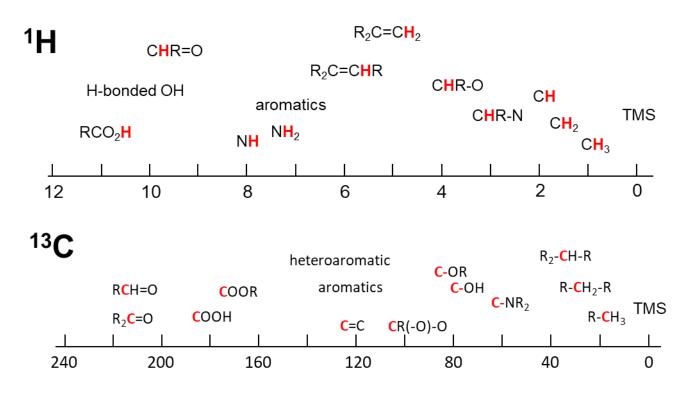
The Night Queue

- On the AV400 and HD500, ¹³C spectra are automatically placed in the night queue. If the experiment time is < 20 min, they will run during idle daytime. Otherwise, they will run starting at 9 PM.
- On the NEO400, 2D spectra and C13CPD experiments will default to the night queue.
 C13CPD32 will default to the day queue, so either do not adjust the experiment length longer than 30 minutes or switch it to the night queue.
- Day-queue experiments (such as ¹H 1D) made to run long (> 20 min on AV400 and HD500, > 30 min on NEO400) should be set to the night queue by clicking on the sun icon: It should switch to a moon:
- Mind the total length of the night queue: 9PM-9AM on NEO400, 9PM-10:30 AM on AV400 and AV500. Your experiment will not run if it can not finish within this window. Allow approximately 5 extra minutes per experiment for lock/atm/shimming. Before submitting, check the current night queue length (from already-submitted experiments) in the bottom right corner:

Checking Status of NMR Instruments

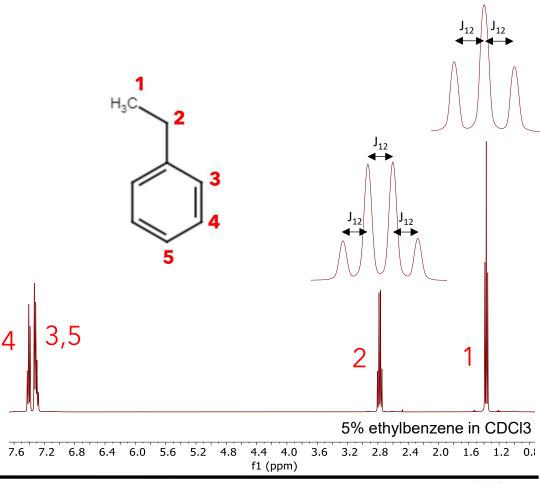
http://chav400.oldchem.uc.edu:8015 (AV400) http://chhd500.oldchem.uc.edu:8015 (HD500) http://chneo400.oldchem.uc.edu:8015 (NEO400)

- (links on NMR lab website)
- Username is your ICON-NMR username, password is "chemistry"
- "Read only" interface


General Rules

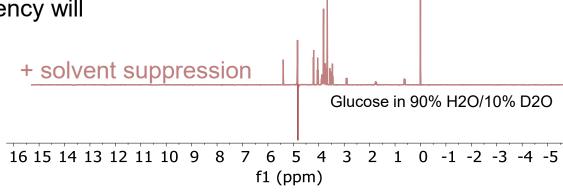
- 1) Put experiments with lengths exceeding 20 minutes in the night queue
- 2) Do not remove/touch sample until autosampler light is green
 - Automation will halt otherwise
- 3) Spinners go in the designated holder, tubes go in the tube rack
- 4) No open containers/tubes or syringes permitted in NMR lab
- 5) Report broken tubes promptly to NMR facility manager
- 6) Submit experiments in numerical order if possible (always do this on NEO400)
- 7) Clean tubes with kimwipes and measure their depth with the depth gauge
 - Tubes with small sample volumes raised slightly to center the sample in the coil
 - Never place the tube lower than the bottom of the gauge—it may break in the probe
- 8) Retrieve samples from room in a reasonable amount of time
- 9) Mark your tubes. Do not use tape
- 10) Log out when you are done

Chemical Shift Ranges


Note that the ¹³C and ¹H trends tend to match each other! Chemical shift is affected by the same electrons in each case!

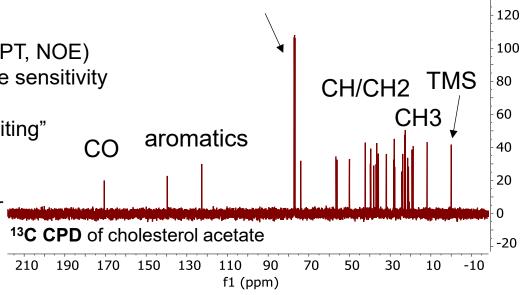
¹H zg30

- High sensitivity
 - Impurities usually evident if present
- Shows multiplicity, aids in assignments
- Commonly acquired with 100% deuterated solvent, but not always necessary
- Relatively fast T1 relaxation, pulse delay can be ~ 2 s
- Overlap sometimes an issue



¹H with solvent suppression

- Improves sensitivity
- Can be run with lock off (no deuterated solvent required)
- Residual signal at solvent 1H zg30 frequency remains
- Peaks near solvent frequency will also be suppressed

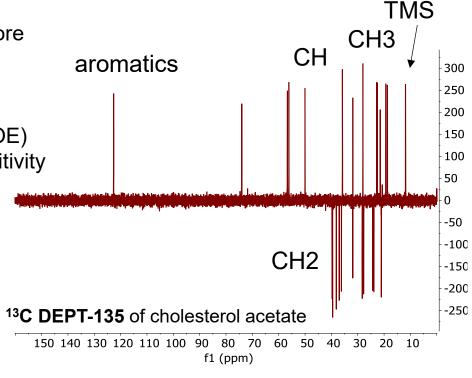


160

140

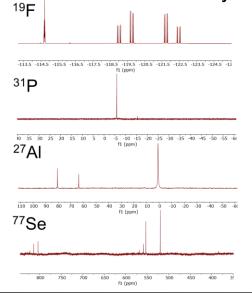
¹³C CPD, zigig, zgpg, dept

- Lower sensitivity
 - Protonated carbons usually have more signal
 - Use >10 mM if possible!
- Magnetization transfer (DEPT, INEPT, NOE) from attached protons can enhance sensitivity
- Multiplicity can be inferred with "editing" (DEPT)
- Slower T1 relaxation, especially for quaternary/unprotonated carbons
- Overlap not usually a problem


CDCI3

¹³C CPD, zigig, zgpg, dept

- Lower sensitivity
 - Protonated carbons usually have more signal
 - Use >10 mM if possible!
- Magnetization transfer (DEPT, INEPT, NOE) from attached protons can enhance sensitivity
- Multiplicity can be inferred with "editing" (DEPT)
- Slower T1 relaxation, especially for quaternary/unprotonated carbons
- Overlap not usually a problem



1D spectra of less-common nuclei

- Our broadband probes can excite any NMRactive nucleus!
- Watch out for unexpected...
 - long T1 relaxation
 - large chemical shift ranges
 - lower sensitivity

N PROTON	* *	= ₩	ē		00:01:30
n HMBCETGP	L3ND_13C	HMBCETG	PL3ND	13C (multiple	e bond)
n HSQCEDET					
N DOSY					
N PROTON_1					
n C13CPD_1F	SOLV C1	BCPD with	bilevel	decoupling of	ptimized for p
N C13CPD32					ng optimized
N PROF19DE					
N PROTON_BI N 2Hzq	2H 1D zq		a bigge	er wiridow	
N 7Li ZG			na		
N B11ZG		no decou			
N B11 BS				suppression	
N B11 IGBS					and 1H decou
N N14	14N zg	,			
N N15	15N exp. n	o decoup	ling		
N Mg25_zg					nd suppression
N Mg25_BS					no decoupling
N SI29IG	29Si exp. i			coupling	
N SE77ZG		p. no deco		-1	
N SN119IG	1195n e	xp. invers	e gated	decoupling	

		Natural		Resonance frequency on
	Spin I	abundance	Receptivity $(13C = 1)$	a 400 MHz magnet (MHz)
Hydrogen	1/2	99.985%	5670	400.00
Deuterium	1	0.015%	0.0082	61.40
Carbon-13	1/2	1.108%	1.00	100.60
Nitrogen-15	1/2	0.370%	0.022	40.56
Fluorine-19	1/2	100.000%	4730	376.36
Aluminum-27	5/2	100.000%	1170	104.32
Silicon-29	1/2	4.700%	2.1	79.48
Phosphorous-31	1/2	100.000%	377	161.92
Selenium-77	1/2	7.630%	3.15	76.29

¹⁹Fun with ¹⁹Fluorine

On NEO400 & AV400, many options for ¹⁹F NMR including:

¹⁹F 1D

- with and without ¹H decoupling
- · with and without echo for improved baseline

¹⁹F-¹⁹F COSY 2D (through-bond ¹⁹F-¹⁹F couplings)

with and without ¹H decoupling

¹⁹F-¹⁹F NOESY 2D (through-space ¹⁹F-¹⁹F correlations)

with and without ¹H decoupling

¹⁹F-¹H HMBC/HSQC 2D (through-bond ¹⁹F-¹H couplings)

with and without ¹H presaturation

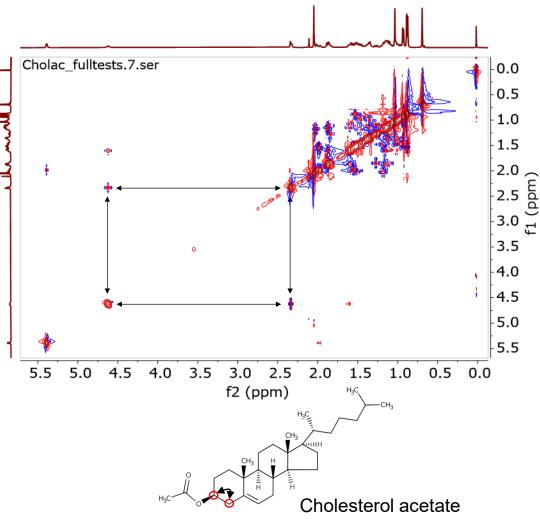
¹⁹F-¹H HOESY 2D (through-space ¹⁹F-¹H correlations)

with and without ¹H presaturation

¹⁹F T1 inversion-recovery (¹⁹F T1 measurement)

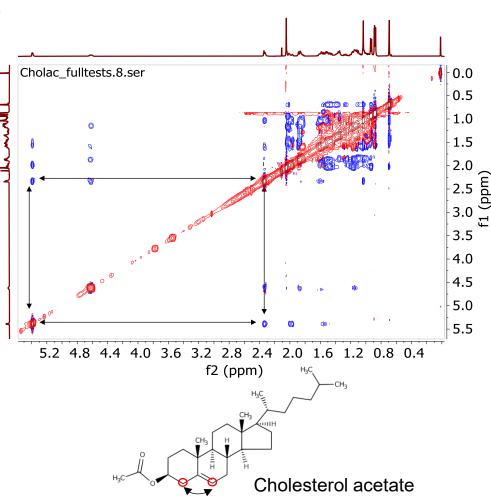
¹⁹F DOSY (¹⁹F diffusion measurement)

FU ZUO HUO HUA ZHI	Flusulfamide	Cyflufenamid	Flutianil	
F ₃ C O O S N	F O S NO2	F F F N N P F F F F F F F F F F F F F F	F F N S N O	
host plant defence induction	inhibit germination of P. brassicae	unknwon	unknown	
Fungicide	Fungicide	Fungicide	Fungicide	
Fluazifop	Funaihecaoling	Haloxyfop-P-methyl	Haloxyfop	
F-F-N-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-	F ₃ C	F ₃ C N	F ₅ C N CH ₃ O OH	
inhibit acetyl CoA carboxylase	inhibit acetyl CoA carboxylase	inhibit acetyl CoA carboxylase	inhibit acetyl CoA carboxylase	
	Herbicide	Herbicide	Herbicide	


Liu laboratory

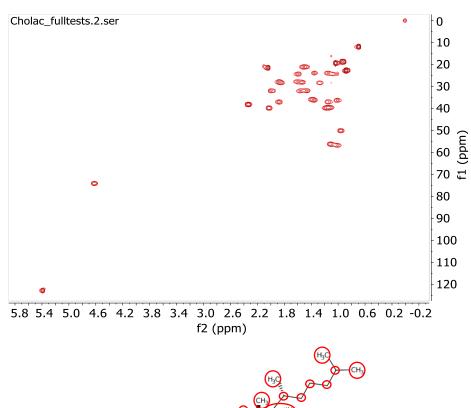
¹H-¹H COSY 2D

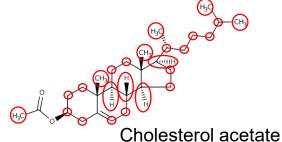
- Provides 3-bond ¹H-¹H correlations
- Complex multiplicies resolved in cross-peaks
- Option for suppression of solvent peak
- Most useful for compounds with many protons!



¹H-¹H NOESY and ROESY

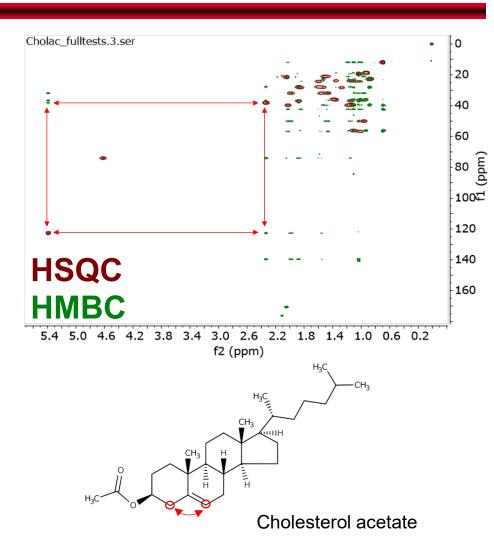
- Provides through-space ¹H-¹H correlations (< 5 Å apart)
- NOESY not suitable for compounds between ~1-2 kDa (ROESY should be performed instead for these)
- Requires setting of a mixing time, usually between 500-800 ms
- Most useful for compounds with many protons!





¹³C-¹H HSQC 2D

- Correlates ¹³C shift to ¹H shift of attached proton
- Helps reduce overlap
- CH/CH₃ positive, CH₂ negative
- Non-protonated carbons are missing!
- Related: ¹³C-¹H HMBC 2D shows correlations between carbons and protons 2+ bonds apart.



¹³C-¹H HMBC 2D

- Correlates ¹H shift to ¹³C shift of carbons 2+ bonds apart
- Helps reduce overlap
- Aids in assignments
- Shows correlations to nonprotonated carbons!
- Ambiguities (are they 2, 3, or 4 bonds apart?)

Solid-State MAS NMR

4mm HX CPMAS probe

- Paid for in part by a Core
 Enhancement grant from the UC
 Office of Research
- Spins 4mm rotors up to 12.5 kHz
- ¹H/¹⁹F and X (tunes up to ³¹P) channels
- Modern MAS III controller and MAS shuttle system for rotor insert/eject

Solid-State MAS NMR

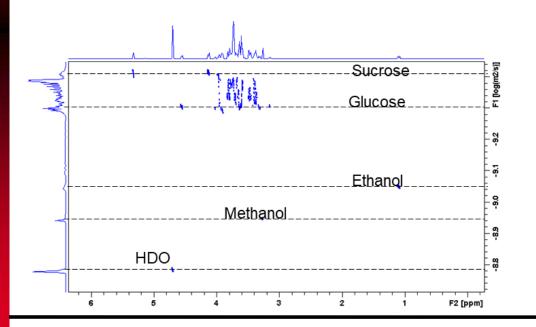
Samples:

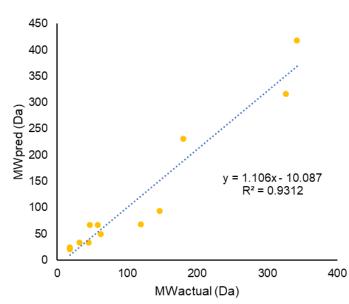
- Insoluble compounds
- Large-MW polymers
- Reactions performed in the solid state
- Should be a powder, 100 µl or greater

Nuclei:

- ¹⁰⁹Ag-³¹P (¹⁹F without ¹H decoupling) and ¹H.
- ¹H is of limited use due to very wide lineshapes (high gyromagnetic ratio)
- Most common is direct-polarization ¹³C with ¹H decoupled

Sensitivity:


 Natural-abundance ¹³C signal-to-noise of 50-400 with an hour of data collection, depending on complexity of molecule



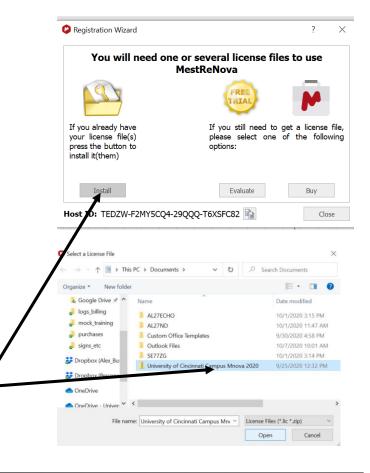
Diffusion NMR (DOSY)

- Extends a ¹H spectrum into a second dimension that informs on diffusion
- Provides approximate diffusion constants/mol weights for each ¹H peak
- Enables easy distinguishing between compounds in a mixture!
- ¹⁹F versions now available

Becoming an NMR Facility User:

- 1) Become affiliated with a research lab!
- 2) Contact the facility manager (Alex, greenwa2@ucmail.uc.edu)
- 3) Read safety guidelines
- 4) Schedule first training session (submitting on walk-ups) with Alex
- 5) Set up NMR data access and complete data processing exercise
- 6) Once (4) and (5) are complete, receive card access and start collecting data!
- 7) (Optional) Further training on NEO400 (variable temperature)

Installing/Activating MNova



Download Mnova from

https://mestrelab.com/download/mnova/

NOTE: DO NOT DOWNLOAD THE LATEST VERSION. Rather, download version 15.1 or lower.

- Get the campus license file from https://www.artsci.uc.edu/departments/chemistry/resourc es/software.html
- While on campus network, load the license file the first time you use the software:
- The license needs to refresh every few months by running the software on the campus network

Resources

On the NMR lab website:

- Instructions for running on the instruments
- Instructions for special samples (protonated solvents, small volumes)
- Instructions for accessing data
- Web interfaces to show current ICON-NMR status
- Link to MNova and Mnova license

Training and Resources

- Running NMR experiments in ICON-NMR
- · Running with protonated solvents
- · Running with small sample volumes
- · Accessing your data on the NMR data server
- ICON-NMR Web interface for NEO400
- ICON-NMR Web interface for AV400
- ICON-NMR Web interface for HD500
- · MNova processing exercise
- NMR Experiment Guide

Software

- Mestrelab MNova
- Mnova display properties

Links

NMR Impurity Tables:

- http://pubs.acs.org/doi/pdf/10.1021/jo971176v
- http://pubs.acs.org/doi/pdf/10.1021/om100106e

